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Canonical Asymetric Coupled-Resonator
Filters

H. CLARK BELL, JR., SENIOR MEMBER, IEEE

Msstract —A direct (noniterative) procedure is presented for reahzing

canonical, structurally asymmetric lowpass prototypes for coupled-resona-

tor bandpass filters with “bridge” coupfings. An asymmetric prototype is

obtained from the canonicaf symmetric prototype (which is realizable

without matrix methods) by applying simple plane rotations to the coupling

matrix. The resulting asymmetric prototype may he a more desirable

structure, and may fmve fewer coupfings, than the canonical symmetic

prototype. The procedure is applicable to filters with symmetric or asym-

metic frequency responses.

I. INTRODUCTION

T HE USE OF nonsequential or” bridge” couplings in a

narrow-bandpass coupled-resonator filter permits great

flexibility in the choice of response characteristics. This is

particularly advantageous when high selectivity and low

passband distortion requirements are simultaneously im-

posed on a filter. In the first step of synthesis, an ap-

proximation in the form of a transducer function (or its

inverse, the scattering parameter Szl ) is found that is in

accordance with both the filter specifications and the antic-

ipated filter structure [2], [7]. In the second, or realization,

step of synthesis, the element values of a specific filter

circuit are obtained. The subject of this paper is the

realization of canonical, structurally asymmetric low-pass

prototype circuits for coupled-resonator filters with bridge

couplings.

The realization procedure requires first that a canonical

symmetric prototype network be realized [1]. This proto-

type can be realized without any matrix manipulations

because the bisected even- and odd-mode networks of the

symmetric structure have no bridge couplings. As a result,

they are developed as simple ladder-like direct-coupled

networks. The synthesis can also be carried out in a

transformed frequency variable, which simplifies the ap-

proximation procedure and increases the overall numerical

accuracy [2].

For a given application, the symmetric prototype may

not be the optimum structure. In such instances a series of

specific plane rotations are applied to the coupling matrix,

transforming it into a more suitable asymmetric network.

This realization procedure is a direct (noniterative) method,

and does not require the formation of an initially non-

canonical coupling matrix [3]. The procedure leads to some

interesting canonical prototypes, including practical struc-

tures for filters of odd degree with symmetric frequency
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Fig. 1. ~ = 6 canonical symmetric prototype, asymmetric frequency re-
sponse.

responses, and general filters with asymmetric frequency

responses.

II. GENERAL CONSIDERATIONS

A. Circuit Representation

A nodal-admittance-matrix representation is used for

lossless doubly terminated low-pass-prototype filters: Y =

G + SC + jK, where s = ju. The degree of the filter is

equal to n, the number of resonators. The order of Y is

n +2, because the unit terminations, at nodes 1 and n +2,

are separated by admittance inverters from the unit capaci-

tors (resonators), which are connected to nodes 2 through

n + 1 (see Fig. 1). Thus the conductance matrix G has zero

elements everywhere except for G ~, = G.+* = 1, and the

capacitance matrix C is similar to the identity matrix

except that Cl, = C~~ ~ = O.

The elements of the constant-susceptance coupling ma-

trix K correspond to the transfer susceptances of admit-

tance-inverter couplings between resonators (Kij) and to

node-shunting constant susceptances ( Kii = Bi). The ma-

trix K is symmetric (KZ j = Kji ) since the filter is reciprocal.

If the network is structurally symmetric, K will also be

symmetric about the cross-diagonal: Kij = K~ .j, ~_,, where

k=n+3.

B, Canonical Property

In addition to structural symmetry or asymmetry, cou-

pled-resonator prototypes can be classified according to

the symmetry or asymmetry of the frequency response. The
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response is symmetric if, in the low-pass frequency domain,

the loss a(~) is an even function of frequency, and the

phase /3( a) is an odd function. A prototype is considered

to be canonical only if the number of couplings in the

network is the minimum number required for the given

structural and frequency-response symmetry characteris-

tics. For even-n and symmetric frequency responses, sym-

metric and asymmetric canonical structures have the same

number of couplings. In all other instances, however, the

symmetric prototype can be transformed into a canonical

asymmetric structure with fewer couplings.

C. Prototype Transformations

In order to preserve the transducer response of the

network, transformations of Y that involve the termination

nodes must be excluded. This implies that for a rotation in

the (i, j)-plane neither i nor j can equal 1 or n +2. With

this restriction, both G and C are invariant under orthog-

onal transformations, and therefore an allowed plane rota-

tion S~YS will affect only the coupling matrix K. In

general, the structural symmetry of a network will be

destroyed by a plane rotation.

The transformation procedure is based on Givens’

method for solution of the algebraic eigenvalue problem

[4], in which a sequence of plane rotations are used to

reduce a real, symmetric matrix to tridiagonal form. By

applying only certain such rotations to the coupling matrix,

particular bridge couplings can be eliminated from the

prototype network. Equations for the elements of a matrix

after a plane rotation are given in Appendix A, where it is

shown that in order to transform a coupling element value

K,, to zero, a rotation in the (i+ 1, j)-plane is made

through the angle @= tan-1 (Kz, /Kz,,+, ). This transfor-

mation may or may not create another coupling elsewhere

in the network, as will subsequently be shown.

III. ASYMMETRIC-RESPONSE FILTERS

The more general type of filter with an asymmetric

frequency response will be treated first. The transformation

procedure will be demonstrated for an n = 6 filter, whose

structurally symmetric prototype [1] is shown in Fig. 1. The

coupling matrix is

K=

B, K12 O 0 0 0 K17 K18

B2 K23 O 0 K26 K27 K17

B3 K34 K35 K36 K26 O

B4 K45 K35 O 0

B4 K34 O 0

B3 K23 O

B2 K12

B,

where only the upper part of the matrix is shown since it is

symmetric. The structural symmetry of the network is

evident by the symmetry of the matrix about the cross

diagonal, e.g., K46 = K35, etc. The number of bridge cou-

plings is nine.

By performing the following sequence of rotations:

(2, 7)-plane, @ = tan-* (K17/K12); (3, 6)-plane, @ =

tan- 1(K26 /K23 ); and (4,5)= plane, + = tan-1( K35 /K34),

the COUphgS K,7, K26, and K35 are eliminated without
creating couplings elsewhere in the network. The resulting

coupling matrix, with six remaining bridge couplings, is

B1K1200000 K18-

B2 K23 O 0 0 K27 K28

Bz K34 O K36 K37 O

B4 K45 K46 O 0
K=

B5 K56 O 0

B6 Kb7 O

B7 K78

B,

where all nonzero elements except K,, = K88 = B 1, and K18

have been changed.

Further transformations can be applied to K, but these

will not reduce the number of couplings. For example,

rotations with the appropriate angles in the sequence (3,7),

(4, 6), (4, 7), (5, 6), (5, 7), and (6, 7) will result in a coupling

matrix

K=

B1K1200000K18

B2 K23 O 0 0 0 K28

B3 K34 O 0 0 K38

B4 K45 O 0 K48

B5 K56 O K58

B6 K67 K68

B, K78

B1

The number of bridge couplings is still six, but they have

all been shifted to the last column and row of the matrix.

Two distinct series of transformations have been de-

scribed. In the first, the bridge couplings above the cross
diagonal ( K17, K26, and K35 ) were eliminated, and each

plane rotation reduced the number of couplings by one.

Those elements could have been eliminated in any order.

This series of transformations will result in a canonical

asymmetric prototype of the form shown in Fig. 2(a).

In the second series of transformations, bridge-coupling

elements on or below the cross diagonal (except those in

the last column) were eliminated. The elimination of an
element Kil, however, created a new element Ki+ ~,j+,.

Unless that element was in the last column, it also was

eliminated. This series of transformations should proceed

sequentially by rows, and by column within each row.

Eventually all bridge couplings can be shifted into the last

column and row of the matrix, resulting in the canonical

asymmetric prototype of Fig. 2(b).

These transformation procedures and prototypes are ap-

plicable to networks of both even and odd degree. No more

than Int(n /2) plane rotations are required to reduce the

prototype to a canonical asymmetric form, which will have

a maximum of n bridge couplings.
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Fig. 3. Even-n canonical symmetric prototype, symmetric frequency
response.

not be applied to filters of even degree. Hence the number

of couplings cannot be reduced, and the canonical symmet-

ric and asymmetric structures have the same number of

bridge couplings.

B. Filters of Odd Degree

The form of the canonical symmetric prototype for odd

n is shown in Fig. 4(a). For an n = 5 filter,

(b)

Fig. 2. Canonical asymmetric prototypes, asymmetric frequency re-
sponse.

K=
IV. SYMMETRIC-RESPONSE FILTERS

The canonical symmetric prototype for a filter with a

symmetric frequency response is characterized by a cou-

pling matrix for which K,, = O if i + j is an even ,number.

(The detailed proof of this is given in Appendix B.) As a

result, the bridge couplings for even n appear only on the

cross diagonal, while for odd n they appear only above and

below the cross diagonal. Because of this difference, the

application of the first series of transformations to the

coupling matrix of even- and odd-degree filters will be

discussed separately.

A. Filters of Even Degree

The canonical symmetric prototype for even n is shown-.
in Fig. 3. For an n = 6 filter the coupling matrix is

K=

OK1200000K,8”

O KZ3 O 0 0 KZ7 O

0 K34 O K36 O 0

0 K45 O 0 0

0 K34 O 0

0 KZ3 O

0 Klz

o

It is clear that since there are no coupling elements above

the cross diagonal, the first series of transformations can-

0K12000K1b0

0 K23 O K25 O K,c

O K34 O K25 O

0 K34 O 0

Applying the first series of transformations in the (2,6) and

(3, 5) planes, K,b and K25 are eliminated. The resulting

coupling matrix is

OK1a O 0 0 0 0

0 KZ3 O 0 0 KZ7

O K34 O K36 O

K= O K45 O 0 . (2)

O K56 O

0 K67

o

After the first series of transformations, the canonical

asymmetric prototype has half the number of bridge cou-

plings as that of the canonical symmetric prototype. Com-

paring the form of (2) with that of (1), the odd-degree

r.x-ototme is similar to the symmetric structure of degree. .
n – 1, with an extra node and resonator in the circuit. The

resulting canonical asymmetric prototype is shown in Fig.

4(b).

C. Further Transformation

Although the first series of transformations, which re-

duces the number of couplings, is not applicable to filters
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Odd-n canonical prototypes. (a) Symmetric prototype. (b) Asym-
metric prototype.

of even degree, additional transformations can be applied

to obtain a more desirable structure for a particular appli-

cation. An example of this is given in Section V-B, in

which Pfitzenmaier’s prototype for an asymmetric dual-

mode filter [5] is obtained.

For filters of both even and odd degrees, the second

series of transformations can be applied to shift all bridge

couplings into the last column and row of the coupling

matrix. This procedure will lead to canonical prototypes

similar to that of Fig. 2(b), except that the bridge couplings

K ~,~, where i + n is even, as well as the resonator-shunting

elements l?,, will be missing. This form of the prototype

was described by Easter and Powell [6] for a filter of degree

five. They were apparently the first to consider multiple

couplings to a termination.

V. DESIGN EXAMPLES

A. Filter of Degree Three

Easter and Powell [6] constructed a three-resonator

waveguide filter based on a symmetric elliptic-function

low-pass prototype response. The maximum passband SWR

ripple was 1.15, and the stopband had a minimum loss of

30 dB with a loss pole on each side of the passband. For

this example, the nonzero elements of the coupling matrix

for the canonical symmetric prototype (Fig. 4(a)) are

Klz =Kq5 = 1.1524 K,d = K25 = – 0.6251

KZ3 = K3d = 1.1209.

A single rotation in the (2,4)-plane results in a canonical

asymmetric prototype (Fig. 4(b)) whose nonzero coupling

elements are

KIZ=l.1541

KZ3 = 1.0586 KZ5 = –0.1248

K34=1.1800

Kd5 = 1.1473.

B. Filter of Degree Six

Pfitzenmaier [5] constructed a six-resonator

square-waveguide dual-mode filter, for which the input and

output resonators are located in adjacent cavities. He used

a symmetric elliptic-function low-pass prototype response

with a minimum passband return loss ripple of 26 dB, and

a minimum stopband loss of 25 dB with two loss poles in
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Fig. 5.

h h8
Pfitzenmaier’s ~ = 6 canonical asymmetric prototype for dual-

mode filters.

each stopband. The nonzero coupling elements of the

canonical symmetric prototype (Fig. 3) are

K12 =K78 =1.1010

K23 = K67 = 0.9056 KZ7 = 0.1907

K3d = K56 = 0.5003 Kye = – 0.4756

K45 = 0.8908.

By applying a (4,6)-plane rotation to make K~6 = O, the

coupling KA7 is created. The resulting canonical asymmet-

ric prototype is shown in Fig. 5, and the nonzero couplings

are

Klz = KT8 =1.1010

KZB = 0.9056 K27 = 0.1907

K~d = 0.6903

Kb5 = 0.3009 Kd7 = – 0.6240

K56 = 0.9764

K67 = 0.6565,

VI. CONCLUSION

It has been shown that a minimal number of matrix

manipulations are required to transform a canonical sym-

metric prototype into a canonical asymmetric prototype.

Depending on the symmetry of the frequency response, no

more than Int(n /2) plane rotations are required to reduce

the network to a canonical asymmetric form. Further

transformations may thtm be applied to shift the locations

of bridge couplings in the network, although no further

reduction in the number of couplings is possible.

APPENDIX A

PLANE ROTATIONS

When a real, symmetric matrix A is transformed by a

rotation of angle @in the (p, q) plane, where it is assumed

that p < q, the elements of the resulting matrix B are

BPP= APPCOS2q + A~~sin2 @+ AP~sin2~

BiP = BP, = Aipcos @+ Aigsin@

}
Bi~ = B~l = – AIPsin@ + Ai~COSI#S ‘

i*porq

B,l = A,j, iandj*porq.

In Givens’ method [4], a rotation in the (i+ 1, j) plane is

performed to make B,J = – A,,,+, sin++ AZ, COSI#I= O: The

angle of rotation is therefore@= tan-1 (A IJ/Ai,,+ ,).

APPENDIX B

SYMMETRIC FREQUENCY RESPONSE, SYMMETRIC

PROTOTYPE

The purpose here is to show that for the canonical

symmetric low-pass prototype [1], a symmetric frequency

response will result if all elements Kij of the coupling

matrix are zero, where i + j is an even number.

A. Requirements for Symmetric Response

Let B+ and B_ be the even- and odd-mode input suscep-

tances, respectively, for the unterminated lossless symmet-

ric prototype. (These are identical to the susceptances of

the arms of an equivalent symmetric lattice network.) The

transducer function for the filter with unit terminations is

[7]

~=~=(l+~B+)(l+~B-)

s 21 j(B_– B+) “

The loss (a) in nepers and phase (~) in radians is given by

a + j~ = 1n H. A symmetric frequency response implies

that a(ti) = a(– u) and /3(co) = – B(– u). The require-

ment that ~ is an odd function of o implies that

Ire(H) = ‘~B- – 1 = odd function of @.

Re(H) B,+ B_

Thusj Bw B_ must be even, B++ B_ must be odd, and

therefore

Ev(B+).Od(B_ )+ Ev(B_).Od(B+)=O

EV(B+)= –Ev(B_).

These relationships can be satisfied in one of two ways:

EV(B+)= –Ev(B_)*O

Od(B+)=Od(B_) }

(Bl)

or

Ev(B+)=Ev(B_)=O. (B2)

It can be easily verified that if either (B 1) or (B2) is

satisfied, IH 1, and therefore a(a), are even functions of

frequency.
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B. Eoen - and Odd-Mode Susceptances

Partial-fraction expansions of B + for the prototype [1]

will be exainined, in which Ktj = O if i + j is an even

number.

Even n: The appropriate continued-fraction expansions

are

K;z
B+(a)= +K1, n+2–

K&
@* K2, n+I—

(. J*...

It is apparent that B +(– a)= – B T(a). Examining this

relationship @more detail reveals that Ev( B+)= – Ev( B _ )

and Od(B+) = Od(B_), thus satisfying (Bl).

@’d n: The appropriate continued-fraction expansions

are

(~12*Kl,n+J2
B+(Q)= –

~_ (K23*K2,n)2

,’a –...

(K12*%+I)2
B+(–a)=–

--- (Kz3+Kz:m)2 “
—6 )-...

In this instance, B&(– o)= – B+(w), hence Ev(B+)=

O and equation (B2) is satisfied.
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