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Canonical Asymmetric Coupled-Resonator
Filters

H. CLARK BELL, JR., SENIOR MEMBER, IEEE

Abstract —A direct (noniterative) procedure is presented for realizing
canonical, structurally asymmetric lowpass prototypes for coupled-resona-
tor bandpass filters with “bridge” couplings. An asymmetric prototype is
obtained from the canonical symmetric prototype (which is realizable
without matrix methods) by applying simple plane rotations to the coupling
matrix. The resulting asymmetric prototype may be a more desirable
structure, and may have fewer couplings, than the canonical symmetric
prototype. The procedure is applicable to filters with symmetric or asym-
metric frequency responses.

1. InTRODUCTION

HE USE OF nonsequential or “bridge” couplings in a

narrow-bandpass coupled-resonator filter permits great
flexibility in the choice of response characteristics. This is
particularly advantageous when high selectivity and low
passband distortion requirements are simultaneously im-
posed on a filter. In the first step of synthesis, an ap-
proximation in the form of a transducer function (or its
inverse, the scattering parameter S,,) is found that is in
accordance with both the filter specifications and the antic-
ipated filter structure [2], [7]. In the second, or realization,
step of synthesis, the element values of a specific filter
circuit are obtained. The subject of this paper is the
realization of canonical, structurally asymmetric low-pass
prototype circuits for coupled-resonator filters with bridge
couplings.

The realization procedure requires first that a canonical
symmetric prototype network be realized [1]. This proto-
type can be realized without any matrix manipulations
because the bisected even- and odd-mode networks of the
symmetric structure have no bridge couplings. As a result,
they are developed as simple ladder-like direct-coupled
networks. The synthesis can also be carried out in a
transformed frequency variable, which simplifies the ap-
proximation procedure and increases the overall numerical
accuracy [2].

For a given application, the symmetric prototype may
not be the optimum structure. In such instances a series of
specific plane rotations are applied to the coupling matrix,
transforming it into a more suitable asymmetric network.
This realization procedure is a direct (noniterative) method,
and does not require the formation of an initially non-
canonical coupling matrix [3]. The procedure leads to some
interesting canonical prototypes, including practical struc-
tures for filters of odd degree with symmetric frequency
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Fig. 1. n= 6 canonical symmetric prototype, asymmetric frequency re-

sponse.

responses, and general filters with asymmetric frequency
responses.

II. GENERAL CONSIDERATIONS

A. Circuit Representation

A nodal-admittance-matrix representation is used for
lossless doubly terminated low-pass-prototype filters: ¥ =
G + sC+ jK, where s = jw. The degree of the filter is
equal to n, the number of resonators. The order of Y is
n +2, because the unit terminations, at nodes 1 and n +2,
are separated by admittance inverters from the unit capaci-
tors (resonators), which are connected to nodes 2 through
n+1 (see Fig. 1). Thus the conductance matrix G has zero
elements everywhere except for G, =G,,,=1, and the
capacitance matrix C is similar to the identity matrix
except that C;;=C,,,=0.

The elements of the constant-susceptance coupling ma-
trix K correspond to the transfer susceptances of admit-
tance-inverter couplings between resonators (K,;) and to
node-shunting constant susceptances (K,; = B;). The ma-
trix K is symmetric (K,; = K ;) since the filter is reciprocal.
If the network is structurally symmetric, K will also be
symmetric about the cross-diagonal: K;; = K _; ;_,, where
k=n+3.

B. Canonical Property

In addition to structural symmetry or asymmetry, cou-
pled-resonator prototypes can be classified according to
the symmetry or asymmetry of the frequency response. The
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response is symmetric if, in the low-pass frequency domain,
the loss a(w) is an even function of frequency, and the
phase B(w) is an odd function. A prototype is considered
to be canonical only if the number of couplings in the
network is the minimum number required for the given
structural and frequency-response symmetry characteris-
tics. For even-n and symmetric frequency responses, sym-
metric and asymmetric canonical structures have the same
number of couplings. In all other instances, however, the
symmetric prototype can be transformed into a canonical
asymmetric structure with fewer couplings.

C. Protorype Transformations

In order to preserve the transducer response of the
network, transformations of Y that involve the termination
nodes must be excluded. This implies that for a rotation in
the (i, j)-plane neither i nor j can equal 1 or n+2. With
this restriction, both G and C are invariant under orthog-
onal transformations, and therefore an allowed plane rota-
tion STYS will affect only the coupling matrix K. In
general, the structural symmetry of a network will be
destroyed by a plane rotation.

The transformation procedure is based on Givens’
method for solution of the algebraic eigenvalue problem
[4], in which a sequence of plane rotations are used to
reduce a real, symmetric matrix to tridiagonal form. By
applying only certain such rotations to the coupling matrix,
particular bridge couplings can be eliminated from the
prototype network. Equations for the elements of a matrix
after a plane rotation are given in Appendix A, where it is
shown that in order to transform a coupling element value
K,, to zero, a rotation in the (i+1, j)-plane is made
through the angle ¢ =tan™'(X,, /K, ,,,). This transfor-
mation may or may not create another coupling elsewhere
in the network, as will subsequently be shown.

ITI. ASYMMETRIC-RESPONSE FILTERS

The more general type of filter with an asymmetric
frequency response will be treated first. The transformation
procedure will be demonstrated for an n =6 filter, whose
structurally symmetric prototype [1] is shown in Fig. 1. The
coupling matrix is

B, K, O 0 0 0 K, Kj;

B, Ky 0 0 Ky Ky Ky

By Ki Ky Ky Ky O

K B, K4 Kss 0 0
B, K, 0 0

B, K, O

B, Ky

Bl

where only the upper part of the matrix is shown since it is
symmetric. The structural symmetry of the network is
evident by the symmetry of the matrix about the cross
diagonal, e.g., K, = K5, etc. The number of bridge cou-
plings is nine.
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By performing the following sequence of rotations:
(2, 7)-plane, ¢ = tan" ' (K ,/K,); (3, 6)-plane, ¢ =
tan™'(Ky/Ky); and (4,5) = plane, ¢ = tan™! (K5 /K3,),
the couplings K,;, K, and K5 are eliminated without
creating couplings elsewhere in the network. The resulting
coupling matrix, with six remaining bridge couplings, is

B, K, 0 0 0 0 0 Ky
B, Ky 0 0 0 Ky Ky
By, K, 0 Ky Ky O
. B, K, Ko 0 0
B, K, O
B; Ky
L Bl

where all nonzero elements except K|, = Kg; = B, and K
have been changed.

Further transformations can be applied to K, but these
will not reduce the number of couplings. For example,
rotations with the appropriate angles in the sequence (3,7),
4,6), (4,7, (5,6), (5,7), and (6,7) will result in a coupling
matrix

(B, kK, 0 0 0 0 0 K,
B, K, 0 0 0 0 Ky

B, Ky 0 0 0 Ky

K B, Ky 0 0 Ky
Bs Ks¢ 0 Kg

Bs Ko K

B7 K78

Bl

The number of bridge couplings is still six, but they have
all been shifted to the last column and row of the matrix.
Two distinct series of transformations have been de-
scribed. In the first, the bridge couplings above the cross
diagonal (K,;, K, and K,;) were eliminated, and each
plane rotation reduced the number of couplings by one.
Those elements could have been eliminated in any order.
This series of transformations will result in a canonical
asymmetric prototype of the form shown in Fig. 2(a).

In the second series of transformations, bridge-coupling
elements on or below the cross diagonal (except those in
the last column) were eliminated. The elimination of an
element K, however, crcated a new element K, ;.
Unless that element was in the last column, it also was
eliminated. This series of transformations should proceed
sequentially by rows, and by column within each row.
Eventually all bridge couplings can be shifted into the last
column and row of the matrix, resulting in the canonical
asymmetric prototype of Fig. 2(b).

These transformation procedures and prototypes are ap-
plicable to networks of both even and odd degree. No more
than Int(n /2) plane rotations are required to reduce the
prototype to a canonical asymmetric form, which will have
a maximum of »n bridge couplings.
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Fig. 2. Canonical asymmetric prototypes, asymmetric frequency re-
sponse.

IV. SYMMETRIC-RESPONSE FILTERS

The canonical symmetric prototype for a filter with a
symmetric frequency response is characterized by a cou-
pling matrix for which K, =0 if i+ j is an even number.
(The detailed proof of this is given in Appendix B.) As a
result, the bridge couplings for even n appear only on the
cross diagonal, while for odd » they appear only above and
below the cross diagonal. Because of this difference, the
application of the first series of transformations to the
coupling matrix of even- and odd-degree filters will be
discussed separately.

A. Filters of Even Degree

The canonical symmetric prototype for even n is shown
in Fig. 3. For an »n = 6 filter the coupling matrix is

1337

G
S A
I 2 3 N/2+1

Fig. 3. Even-n canonical symmetric prototype, symmetric frequency
response.

not be applied to filters of even degree. Hence the number
of couplings cannot be reduced, and the canonical symmet-
ric and asymmetric structures have the same number of
bridge couplings.

B. Filters of Odd Degree

The form of the canonical symmetric prototype for odd
n is shown in Fig. 4(a). For an n = 5 filter,

(0 kK, 0 0 0 K, O
0 Ky 0 Ky 0 Ky
0 Ky 0 K, 0
K= 0 K, 0 0
0 Ky 0
0 K,
i 0 |

Applying the first series of transformations in the (2,6) and
(3,5) planes, K,; and K,; are eliminated. The resulting
coupling matrix is

(0 kK, 0 0 0 0 0|
0 Ky 0 0 0 Ky,
0 Ky 0 Ky O
K= 0 K5 0 0. (2
0 Ky O
0 K¢
| 0 ]

After the first series of transformations, the canonical
asymmetric prototype has half the number of bridge cou-
plings as that of the canonical symmetric prototype. Com-
paring the form of (2) with that of (1), the odd-degree

[0 k, 0 0 0 0 0 K]
0 K, 0 0 0 K, 0
0 Ky, 0 K, O 0
Ko 0 Ks O 0 0
0 Ky 0 0
0 K, O
0 KIZ
i 0 ]

(1)
It is clear that since there are no coupling elements above
“the cross diagonal, the first series of transformations can-

prototype is similar to the symmetric structure of degree
n —1, with an extra node and resonator in the circuit. The
resulting canonical asymmetric prototype is shown in Fig.
4(b).

C. Further Transformation

Although the first series of transformations, which re-
duces the number of couplings, is not applicable to filters
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Fig. 4. 0dd-n canonical prototypes. (a) Symmetric prototype. (b) Asym-
metric prototype.

of even degree, additional transformations can be applied
to obtain a more desirable structure for a particular appli-
cation. An example of this is given in Section V-B, in
which Pfitzenmaier’s prototype for an asymmetric dual-
mode filter [5] is obtained.

For filters of both even and odd degrees, the second
series of transformations can be applied to shift all bridge
couplings into the last column and row of the coupling
matrix. This procedure will lead to canonical prototypes
similar to that of Fig. 2(b), except that the bridge couplings
K, ,, where i + n is even, as well as the resonator-shunting
elements B,, will be missing. This form of the prototype
was described by Easter and Powell [6] for a filter of degree
five. They were apparently the first to consider multiple
couplings to a termination.

V. DESIGN EXAMPLES

A. Filter of Degree Three

Easter and Powell [6] constructed a three-resonator
waveguide filter based on a symmetric elliptic-function
low-pass prototype response. The maximum passband SWR
ripple was 1.15, and the stopband had a minimum loss of

30 dB with a loss pole on each side of the passband. For
this example, the nonzero elements of the coupling matrix
for the canonical symmetric prototype (Fig. 4(a)) are
K,=K;=11524 K, ,=K, ;= —0.6251
K,; =K., =1.1209.

A single rotation in the (2,4)-plane results in a canonical
asymmetric prototype (Fig. 4(b)) whose nonzero coupling
elements are

K, =1.1541
K,,=1.0586 K, 3= —0.1248
K,, =1.1800
K, =1.1473.

B. Filter of Degree Six

Pfitzenmaier [5] constructed a six-resonator
square-waveguide dual-mode filter, for which the input and
output resonators are located in adjacent cavities. He used
a symmetric elliptic-function low-pass prototype response
with a minimum passband return loss ripple of 26 dB, and
a minimum stopband loss of 25 dB with two loss poles in
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Fig. 5. Pfitzenmaier’s n =6 canonical asymmetric prototype for dual-
mode filters.

e

each stopband. The nonzero coupling elements of the
canonical symmetric prototype (Fig. 3) are

K,=K,=1.1010
K,; = K¢ =0.9056 K,
K, = K, =0.5003 Ky
K, =0.8908.
By applying a (4,6)-plane rotation to make K, =0, the
coupling K, is created. The resulting canonical asymmet-

ric prototype is shown in Fig. 5, and the nonzero couplings
are

=0.1907
= —0.4756

K, = K7 =1.1010

K,;=09056 K, =0.1907
Ky, = 0.6903

K, =03009 K, = —0.6240
K= 0.9764

Ky, = 0.6565.

" VL. CONCLUSION

It has been shown that a minimal number of matrix
manipulations are required to transform a canonical sym-
metric prototype into a canonical asymmetric prototype.
Depending on the symmetry of the frequency response, no
more than Int(n /2) plane rotations are required to reduce
the network to a canonical asymmetric form. Further
transformations may then be applied to shift the locations
of bridge couplings in the network, although no further
reduction in the number of couplings is possible.

APPENDIX A

PLANE ROTATIONS

When a real, symmetric matrix 4 is transformed by a
rotation of angle ¢ in the ( p, ¢) plane, where it is assumed
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that p < g, the elements of the resulting matrix B are

— 2 22 :
B,,=A4,,co8"¢+ A4, sin ¢+ 4,,smn2¢

By =A,,si" ¢+ A, cos’¢— 4,,sin2¢
B,,=B,,=%(A,,—A,,)sin2¢ + 4,,cos2¢
B,=B, = ,.pcos¢+A,.qsin¢>

o . P , i=porg
B,=B,=—A,sing+ A4,,cos¢
B, =4, iandj= porg.

In Givens’ method [4], a rotation in the (i +1, j) plane is
performed to make B, = — 4, ,,sin¢ + 4, cos¢ = 0. The
angle of rotation is therefore ¢ =tan"'(4, ; /A, 1)

APPENDIX B

SYMMETRIC FREQUENCY RESPONSE, SYMMETRIC
PROTOTYPE

The purpose here is to show that for the canonical
symmetric low-pass prototype [1], a symmetric frequency
response will result if all elements K;; of the coupling
matrix are zero, where i + j is an even number.

A. Requirements for Symmetric Response

Let B, and B_ be the even- and odd-mode input suscep-
tances, respectively, for the unterminated lossless symmet-
ric prototype. (These are identical to the susceptances of
the arms of an equivalent symmetric lattice network.) The
transducer function for the filter with unit terminations is

[7}

H=

1 _(1+B,)(1+/B_)
S j(B_—-B,)
The loss (@) in nepers and phase () in radians is given by
a+ j8=1nH. A symmetric frequency response implies
that a(w)=a(— w) and B(w)= — B(— w). The require-
ment that 8 is an odd function of w implies that
Im(H) _ B.B_-1
Re(H) B,+B_
Thus, B, B_ must be even, B + T B_ must be odd, and
therefore
Ev(B,)-Od(B_)+Ev(B_)-0d(B,)=0
Ev(B,)= —Ev(B_).
These relationships can be satisfied in one of two ways:
Ev(B,)= —Ev(B_)=0
(B,) (B_) (B1)
0d(B,)=0d(B_)

= odd function of w.

Ev(B,)=Ev(B_)=0. (B2)

It can be easily verified that if either (B1) or (B2) is
satisfied, |H|, and therefore a(w), are even functions of
frequency.
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B. Even- and Odd- Mode Susceptances

Partial-fraction expansions of B + for the prototype [1]
will be- examined, in wlnch K =0 if i+ jis an even
number.

Even n: The appropnate contlnued-fractlon expansions
are

K}
Bi("")= iK1,4+2_ - ‘KZ ;
. wiKz,wlf wizs
KZ
Bi(-w)=1K, 45~ —= X2
» _wiK2’n+l—fwi23"'

It is apparent that B +(— w) = — B ¥(w). Examining this
relationship in more detail reveals that Ev(B ) = —Ev(B_)
and 0d(B+) 0d(B_), thus satisfying (B1).

Odd n: The appropriate continued-fraction expansions
are ' : - :

’(KIZ i 1{1,71-6-1)2

Bt(w)=— _ —
_(KntK,,)
Cw— -
2
(K £ K ,.1)

Bi(-w)=~- : .
o _w;(KBiKuf

—w—
In this instance, B+ (—w)= — B +(w) hence Ev(B +) =
0 and equatlon (B2) is satlsfled ‘
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